Thermal evolution of the Earth as recorded by komatiites
نویسندگان
چکیده
Komatiites are rare ultramafic lavas that were produced most commonly during the Archean and Early Proterozoic and less frequently in the Phanerozoic. These magmas provide a record of the thermal and chemical characteristics of the upper mantle through time. The most widely cited interpretation is that komatiites were produced in a plume environment and record high mantle temperatures and deep melting pressures. The decline in their abundance from the Archean to the Phanerozoic has been interpreted as primary evidence for secular cooling (up to 500‡C) of the mantle. In the last decade new evidence from petrology, geochemistry and field investigations has reopened the question of the conditions of mantle melting preserved by komatiites. An alternative proposal has been rekindled: that komatiites are produced by hydrous melting at shallow mantle depths in a subduction environment. This alternative interpretation predicts that the Archean mantle was only slightly (V100‡C) hotter than at present and implicates subduction as a process that operated in the Archean. Many thermal evolution and chemical differentiation models of the young Earth use the plume origin of komatiites as a central theme in their model. Therefore, this controversy over the mechanism of komatiite generation has the potential to modify widely accepted views of the Archean Earth and its subsequent evolution. This paper briefly reviews some of the pros and cons of the plume and subduction zone models and recounts other hypotheses that have been proposed for komatiites. We suggest critical tests that will improve our understanding of komatiites and allow us to better integrate the story recorded in komatiites into our view of early Earth evolution. 6 2004 Elsevier B.V. All rights reserved.
منابع مشابه
Petrological Evidence from Komatiites for an Early Earth Carbon and Water Cycle
Komatiites from Alexo and Pyke Hill in the Archean Abitibi greenstone belt provide petrological evidence for an early Earth carbon and water cycle, ingassing in the cool Hadean and outgassing in the hot Archean. The komatiites have SiO2 contents that are lower than those expected of advanced volatile-free melting of mantle peridotite. The SiO2 misfit cannot be plausibly accounted for by variati...
متن کاملPetrology and Geochemistry of 3.3 Ga Komatiites– Weltevreden Formation, Barberton Greenstone Belt
Introduction: Komatiites provide several ways of assessing the chemical and thermal evolution of the mantle. Komatiitic liquids are produced from very high degrees of partial melting of the deep mantle, and erupted as extremely fluid lavas. Komatiites are important in the study of the early Earth because they are a significant constituent of the Archean crust. It has been proposed that komatiit...
متن کاملArchean komatiite volcanism controlled by the evolution of early continents.
The generation and evolution of Earth's continental crust has played a fundamental role in the development of the planet. Its formation modified the composition of the mantle, contributed to the establishment of the atmosphere, and led to the creation of ecological niches important for early life. Here we show that in the Archean, the formation and stabilization of continents also controlled th...
متن کاملA Petrologic, Geochemical and Osmium Isotopic Study of Selected Precambrian Komatiites
Title of Dissertation: A PETROLOGIC, GEOCHEMICAL AND OSMIUM ISOTOPIC STUDY OF SELECTED PRECAMBRIAN KOMATIITES Amitava Gangopadhyay, Ph. D., 2004 Dissertation Directed By: Professor Richard J. Walker, Department of Geology The major and trace elements, and Re-Os isotope systematics of the ca. 2.7Ga komatiites from the Alexo and Dundonald Beach areas in the Abitibi greenstone belt, Canada, and ca...
متن کاملThe hottest lavas of the Phanerozoic
The mantle plume hypothesis is widely accepted for the formation of large igneous provinces and many modern day hotspot volcanoes. Petrologic models suggest that plume-derived melts originate at high mantle temperatures (>1500 °C) relative to those generated at ambient midocean ridge conditions (~1350 °C). Earth’s mantle has also appreciably cooled during its history due to heat loss and decrea...
متن کامل